
Research Article Vol. 14, No. 9 / 1 Sep 2023 / Biomedical Optics Express 4567

Hybrid machine-learning framework for
volumetric segmentation and quantification of
vacuoles in individual yeast cells using
holotomography

MOOSUNG LEE,1,2,3,† MARINA KUNZI,4,5,† GABRIEL NEUROHR,4,5,8,‡

SUNG SIK LEE,4,5,6,9,‡ AND YONGKEUN PARK1,2,7,10,‡

1Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141,
Republic of Korea
2KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea
3Current affiliation: Institute for Functional Matter and Quantum Technologies, Universität Stuttgart,
70569 Stuttgart, Germany
4Institute for Biochemistry, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
5Bringing Materials to Life Initiative, ETH Zürich, Zürich, Switzerland
6ScopeM (Scientific Center of Optical and Electron Microscopy), ETH Zürich, 8093, Zurich, Switzerland
7Tomocube Inc., Daejeon 34051, Republic of Korea
8gabriel.neurohr@bc.biol.ethz.ch
9leesu@ethz.ch
10yk.park@kaist.ac.kr
†Contributed equally
‡Co-last authors

Abstract: The precise, quantitative evaluation of intracellular organelles in three-dimensional
(3D) imaging data poses a significant challenge due to the inherent constraints of traditional
microscopy techniques, the requirements of the use of exogenous labeling agents, and existing
computational methods. To counter these challenges, we present a hybrid machine-learning
framework exploiting correlative imaging of 3D quantitative phase imaging with 3D fluorescence
imaging of labeled cells. The algorithm, which synergistically integrates a random-forest classifier
with a deep neural network, is trained using the correlative imaging data set, and the trained
network is then applied to 3D quantitative phase imaging of cell data. We applied this method to
live budding yeast cells. The results revealed precise segmentation of vacuoles inside individual
yeast cells, and also provided quantitative evaluations of biophysical parameters, including
volumes, concentration, and dry masses of automatically segmented vacuoles.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Biological cells, with their complex structure and specialized organelles separate from the
cytoplasm, are the subject of increasingly intricate study. As the physical properties of
intracellular compartments such as density and crowding come under focus [1,2], their tightly
regulated, functionally relevant characteristics have been revealed [3]. Deviations from normal
density have been linked with altered cell function during starvation [4], cellular senescence
[5], and differentiation [3,6–8]. Furthermore, shifts in cytoplasm density can influence essential
processes like phase separation [9–11], signaling [12,13], and growth [14,15]. However, the
limited availability and scalability of methods for studying cell density at subcellular resolution
pose significant challenges [16].

For instance, in budding yeast (Saccharomyces Cerevisiae), whole-cell density measurements
are heavily skewed by the vacuole, an organelle with a function analogous to the mammalian
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lysosome and less dense than the rest of the cell. Therefore, an accessible, high-throughput
method for automatic segmentation of vacuoles and cytoplasm is required.

Fluorescence (FL) microscopy, employing the use of labeled organelles, has served as a pivotal
tool in imaging intracellular compartments within budding yeast. The vacuole, a prominent
subcellular structure, is commonly visualized through the employment of Vph1 tagged with
green fluorescent protein (GFP). Vph1 is an integral membrane protein localized primarily to the
vacuolar membrane [17]. Traditional 3D FL imaging methods entail stacking several axial images
and implementing deconvolution algorithms. Alternatively, confocal or light sheet microscopy
techniques can be employed for three-dimensional imaging acquisition. While these methods
are effective in identifying intracellular structures, they may induce phototoxicity and provide
limited information on the properties of the cytoplasm.

Fig. 1. Volumetric segmentation via FL and RI correlative imaging. (a) Traditional
FL microscopy utilizes axial scanning to generate a 3D image of Vph1-GFP. Although the
deconvolved 3D data facilitate the identification of vacuole morphology, this method is
constrained by photobleaching and limitations in quantifying cell density. (b) HT applies
off-axis holography and angular scanning of incident plane waves to reconstruct an RI
tomogram. While RI offers label-free contrast convertible to cell density, it lacks the
required specificity of the vacuolar protein Vph1 for accurate analysis. (c) In this study,
we employed correlative imaging to quantify cell density of vacuoles and cytoplasm with
enhanced specificity. We also utilized machine learning for the automatic 3D segmentation
of vacuoles.

Quantitative phase imaging (QPI) techniques offer a solution by providing a label-free method
for precise quantification of intracellular organization [18] (Fig. 1(b)). These techniques employ
interferometric microscopy to scan a plane wave angularly and reconstruct the volumetric dis-
tribution of the refractive index (RI). As RI increases proportionally with dry-mass concentration
[19], this method offers dry-mass density as image contrast without the use of fluorescent
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labels. However, the lack of chemical specificity in RI imaging presents challenges for accurate
segmentation of intracellular components.

To surmount these limitations, we have developed a hybrid machine-learning framework
that utilizes correlative imaging of 3D QPI, also known as holotomography (HT), and 3D
FL in labeled cells (Fig. 1(c)). Our method is implemented from our previously developed
methodology, where a neural network is trained using the correlative imaging dataset and
subsequently applied to HT of cell data [20]. This method successfully merges the chemical
specificity of fluorescence imaging with the quantitative capabilities of HT. Additionally, the
incorporation of a machine learning framework enables automatic volumetric segmentation from
raw images, thereby streamlining high-content analysis. Application of this method enabled us
to quantitatively analyze the cytoplasm and vacuoles in live budding yeast cells in their native
states. This study highlights its potential applicability in investigating intracellular density and
its relationship with cellular function.

2. Methods

2.1. Sample preparation

Budding yeast cultures (Saccharomyces Cerevisiae, S288C BY4741) were cultured in synthetic
complete (SC) medium at 30°C. Overnight grown cultures were diluted to an optical density
(OD600) of 0.1 with fresh SC and allowed a 2-hour recovery period before imaging during the log
phase or treating with rapamycin (0.1 or 1 µM) dissolved in ethanol. We imaged rapamycin-treated
cells post 2-hour treatment. Stationary phase cells were imaged 24 hours after initial inoculation.
For imaging purposes, we coated the glass bottom of the Tomodish (Tomocube Inc.) with
2 mg/mL Concanavalin A (Sigma) for 15 minutes, rinsed twice with SC, allowed the cells to
attach for 5 minutes, followed by a single SC wash, and finally covered with a coverslip.

2.2. Optical imaging and reconstruction

For imaging budding yeasts, we used a HT system equipped with 3D FL imaging capability
(HT-2 H; Tomocube Inc.) [21]. HT is an optical counterpart to X-ray computed tomography. It
operates by obtaining multiple 2-D optical field images at various illumination angles. From
these measurements, a 3D RI tomogram of a sample is reconstructed by inversely solving a wave
equation [22,23]. Due to its label-free and quantitative imaging capability, HT has been utilized
for the study of cell biology [24], biophysics [25], neuroscience [26], regenerative medicine
[27,28], and organoids [29].

The imaging system was equipped with water-immersion objective lenses (UPLSAPO60XW,
numerical aperture= 1.2; Olympus Inc.). In FL mode, we scanned the sample stage to image raw
stacks of Vph1-GFP-expressed yeasts with an axial spacing of 300 nm. These raw data were
then deconvolved using the built-in software (Tomostudio, Tomocube Inc.) to generate processed
volumetric images with enhanced resolution [30].

To acquire RI data, we captured 49 raw off-axis holograms in an off-axis Mach-Zehnder
interferometer by angularly scanning a green plane wave using a digital micromirror device
[31–33]. An RI tomogram was reconstructed from these holograms in the built-in software using
the Rytov approximation and non-negativity constraints [34]. The theoretical lateral and axial
resolution of HT were 110 nm and 360 nm, respectively [35]. The RI and FL data were registered
and resized to achieve an isotropic voxel pitch of 200 nm. A regularization algorithm based on
non-zero criteria was employed to mitigate the ‘missing cone’ problem, a phenomenon arising
from the inability to access side scattering signals due to the limited numerical aperture of the
objective lens [34].
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2.3. Machine-learning-based segmentation

For high-throughput intracellular organization analysis, automated segmentation is key. We
achieved this by implementing a machine-learning framework (Fig. 2). We explored the
application of various classifier algorithms, including the support vector machine. However,
we found these algorithms to be relatively less accurate in comparison to the alternatives we
ultimately chose to use in our study. Instead, we utilized ilastik, an open-source machine-learning
annotation software, to prepare 3D labels of vacuoles [36] (Fig. 2(a)).

Fig. 2. Data flowchart for automated 3D vacuole segmentation. (a) Sparse masks are
annotated across XY, XZ, and YZ cross sections of 3D RI and FL Vph1-GFP images to
prepare vacuole labels. These annotations are used to train a random forest segmentation
algorithm, producing random-forest labels (RF). The dataset is then curated by excluding
misregistered and poorly segmented data. (b) The neural network (NN) is trained using
RI and the RF labels from (a) as inputs and training labels, respectively. The trained
NN subsequently predicts 3D vacuole masks using only RI tomograms. (c) Depicts the
architecture of the NN used for the segmentation task.

In each dataset, we manually annotated cytoplasm and vacuoles in at least 3 slices of XY, XZ,
and YZ cross sections. A total of 163 individual cells from 21 randomly selected FL and RI
datasets were annotated manually, training a random-forest (RF) classifier [28] built into the
software. The following selected features were used; five Gaussian smoothing parameters (σ =
0.3, 0.7, 1.6, 3.5, and 10), three edge parameters (σ = 0.7, 1, and 5), and three texture parameters
(σ = 1.6, 5, and 10) for each RI and FL image. This algorithm was then applied to 156 datasets,
from which 69 datasets were curated as well-segmented, excluding those with artifacts due to
movement during imaging or inaccurate segmentation.

To improve our framework and eliminate reliance on FL data, we introduced a deep neural
network (NN) designed to segment vacuoles using solely RI data (Fig. 2(b)). To train the network,
we used the curated set of cells that were segmented based on the Vph1 vacuolar signal. Despite
the exclusive localization of Vph1 to the vacuole membrane [17], its presence proved adequate



Research Article Vol. 14, No. 9 / 1 Sep 2023 / Biomedical Optics Express 4571

for differentiating the vacuole from other cellular structures. The input images for this network
were RI tomograms, normalized from [1.35, 1.45] float to [0, 255] integer formats. The labels
used in the network were the same as those obtained from ilastik.

Our network was adapted from a classical 3D U-Net used for brain tumor segmentation
[37] (Fig. 2(c)). The structure comprises a down-sampling encoder pathway and up-sampling
decoder pathway [38], each with its unique components. Each encoder path includes a context
module that consists of two 3× 3× 3 convolution layers and a dropout layer (p= 0.75) in between.
The context module is connected by a 3× 3× 3 convolution layer with an input stride 2. Each
decoder path includes a localization module that has a 3× 3× 3 convolution layer followed by a
layer that reduces the number of feature maps by half. The localization module is up-sampled
and concatenated with the features from the corresponding level of the context module. A
segmentation layer is set up at different levels, and the network outputs are combined to form the
final network output. Nonlinear activations are achieved through leaky ReLU activation functions
with a 10−2 negative slope and instance normalization [39].

We trained the architecture on a cloud computing platform (Google Colaboratory Pro plus,
Google Inc.) using Python Pytorch code. We segmented 354 individual cells from 69 datasets
and divided them into 266 training and 88 validation sets. With a batch size of 8, the network was
trained for 200 epochs. The loss function comprised 90% binary cross entropy with a logistic
function and 10% focal Tversky function (α= 0.25, β= 0.75, and γ= 2) [40], minimized by the
Adam optimizer [41] with a learning rate of 10−4.

2.4. Quantitative analysis of vacuole and cytoplasm

To obtain the segmented vacuole masks, we used either the RF algorithm or the NN, depending
on which algorithm provided larger Pearson coefficients with the RI image. To segregate the
cytoplasm from the surrounding medium, we refrained from employing Random Forest (RF) or
Neural Network (NN) algorithms. This decision was based on our observation that conventional
thresholding methods were quite sufficient for this particular task. In detail, we defined the
cytoplasm mask by thresholding the RI with the average value between the mean cytoplasm RI
defined in ilastik and the mean vacuole RI, followed by binary erosion with one voxel. Note that
we did not use the binary erosion and the RI average thresholding on the vacuole segmentation.
The level of precision required for this segmentation task surpasses what can be achieved by
employing simple thresholding algorithms. In the discussion section, we will elaborate on the
advantages of utilizing RF or NN methods over the RI average thresholding technique specifically
for vacuole segmentation. Finally, we converted the obtained RI to dry-mass concentration using
the RI increment of 0.1907 mL/g [42].

3. Results

3.1. Validation of segmentation performance

We evaluated the segmentation performance of both the RF classifier and the deep NN for
vacuoles (Fig. 3). We first examined the cross-sections of individual cell data for both the
training and untrained datasets (Figs. 3(a) and (b)). In the training dataset, we curated data of
211 cells for which either RF labels or deep-learning outputs were well-segmented (Figs. 3(a)
and (c)). As expected, the comparison of RI, FL, RF labels, and NN outputs indicated that both
algorithms provided well-segmented vacuole masks. Additionally, we curated 268 cell data from
the untrained dataset (Figs. 3(b) and (d)). We found that the RF labels were inaccurate when
FL images were photobleached during the long fluorescence imaging or misregistered when the
cell moved (see Fig. 3(b), bottom). This issue is overcome by the NN, which robustly provided
vacuole masks where the RI values were smaller than the other regions.
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Fig. 3. Segmentation performance evaluation. (a, b) Representative cross-sections of
RI (gray), Vph1-GFP (green), label from random forest (RF, cyan), and output from NN
(magenta) for (a) the training dataset and (b) the untrained dataset, respectively. (c, d).
Heat scatter maps and projected histograms of Pearson correlation coefficients (ρ) between
3D RI distributions and 3D cell masks for (c) the training dataset and (d) the untrained
dataset, respectively. Axis label: (Horizontal, Vertical)= (ρoutput, ρlabel). (e, f). Similarity
parameters between RF labels and NN outputs. Intersections over union (IOUs), Pearson
correlation coefficients (PCCs), sensitivity, and specificity for (e) the training dataset and
(f) the untrained dataset. The data are presented as mean± standard deviation (SD). The
magenta region indicates where the output mask from the NN has a higher ρ than the label
from the RF, and the cyan vice versa. Scale bar= 2 µm.

To objectively evaluate the segmentation performance of both the RF and NN algorithms,
we computed the Pearson correlation coefficients between the obtained binary mask X and the
refractive index (RI) image (ρX). Given that we were correlating continuous RI values (ranging
from 1.35 to 1.45) with binary values (either 0 or 1), we anticipated relatively low correlation
coefficients. However, the emergence of a positive correlation serves as an indication that lower
RI values are more likely to be identified as part of the vacuole. Heat-scatter plots from both the
training and untrained datasets depicted a positive correlation between ρRF and ρNN (as illustrated
in Figs. 3(c), d). This suggests that the neural network was effectively trained.

In the training set, the mean value of ρRF (mean± SD= 38.7± 8.5%) was slightly larger than
ρNN (mean± SD= 37.5± 8.8%) (Fig. 3(c)). The number of datapoints with larger ρRF (magenta
region in Fig. 3(c)) and larger ρNN (cyan region in Fig. 3(c)) were 117 and 94, respectively. This
indicates that the RF segmentation outperforms the NN network in the trained dataset, which
was expected because the NN was trained using the RF labels. In contrast, in the untrained
dataset, the output masks from the NN output exhibited slightly larger correlation coefficients
(ρNN = 38.7± 9.6%) than the RF labels with smaller standard deviations (ρRF = 35.2± 11.9%)
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(Fig. 3(d)). Correspondingly, the number of datapoints with larger ρRF (magenta region in
Fig. 3(d)) and larger ρNN (cyan region in Fig. 3(d)) were 95 and 173, respectively.

In order to compare the similarity between the labels generated by the RF and the outputs
of the NN, we calculated the intersection over union (IOUs), PCCs, sensitivity, and specificity
(Figs. 3(e) and (f)). Notably, consistent with our previous observations, the similarity between the
RF labels and the NN outputs appears to be lower in the untrained dataset. However, considering
the NN output demonstrates higher correlations with the raw RI tomogram (as displayed in
Fig. 3(d)), our results suggest an enhanced segmentation performance of the NN within the
untrained dataset. Additionally, the steady trends of these parameters imply that the PCC serves
as a sufficient measure for representing the segmentation performance within our study.

Considering the visualized images and the quantitative results, deep learning provided
prediction performances for 3D vacuoles comparable to the RF algorithm without the need for
FL images. Since deep learning is not affected by image registration artifacts caused by vacuole
movement between the acquisition of the RI and FL images, it demonstrated slightly improved
performance for untrained datasets. Collectively, the results suggest the viability of using deep
learning for a more generalized analysis utilizing label-free RI images.

3.2. Quantitative analysis of cytoplasm and vacuoles

We utilized the established framework to perform quantitative biological analysis of cytoplasm
and vacuoles in budding yeast cells under different conditions (Fig. 4). Budding yeast is a
commonly used model organism for studying stress response effects, cell morphology and growth
[43]. We investigated four conditions commonly used in yeast cell biology for which pre-existing
knowledge on cytoplasmic properties is available. These conditions consist of exponentially
growing cells (log phase, N= 96), nutrient depleted cells, (stationary phase, N= 141) and cells
treated with the TORC1 inhibitor rapamycin in two conventional concentrations (0.1 µM (N = 82)
and 1 µM (N = 92)).

Fig. 4. Biological application and quantitative analysis of budding yeast cells. (a)
Representative cross-sections of RI (gray), FL (green; Vph1-GFP), and defined label (white)
for four experimental groups: log phase, stationary phase, rapamycin 0.1 µM, and rapamycin
1 µM. (b) Schematic illustrating the overall results. Budding yeasts in log phase are used as
controls. In the stationary phase, yeasts exhibit larger and denser cytoplasm. When the cells
are treated with rapamycin, their volumes and dry masses increase while their concentration
decreases. Scale bar= 2 µm.
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Fig. 5. Biological application and quantitative analysis of budding yeast cells. (a)
Quantitative results of volumetric parameters, including total cell volume, cytoplasm volume,
and vacuole volume. (b) Quantitative results of dry mass parameters, including total cell
dry mass, cytoplasm dry mass, and vacuole dry mass. (c) Quantitative results of median
dry-mass concentration in cytoplasm and vacuoles. Tukey’s range test was performed, and
the data are presented as mean± standard deviation (SD). *: P< 0.05, **: P< 0.01, ***:
P< 0.001, ****: P< 0.0001.

Cells in stationary phase have been shown to be more refractile than log-phase cells [44].
Treatment with rapamycin was observed to increase cell volume and diffusion in the cytoplasm
[9], which is an indicator for lower crowding and therefore lower dry-mass concentration. These
known behaviors are reflected in our statistical results (Fig. 5). Consistent with a previous study
[43], the mean cell volumes in the log and stationary phases were 21.7 and 26.1 fL, respectively.
The volume of the cytoplasm showed a significant increase in the stationary phase (Fig. 5(a)).
Treatment with 1 µM rapamycin further increased the cytoplasmic volume, which is consistent
with previous studies by Chan and Marshall [45].

The vacuole volume exhibited a similar trend except for the stationary phase. During the
stationary phase, the size and mass of the cytoplasm increase, while the vacuoles retain their
original size. It is important to note here that the vacuoles can be fragmented in logarithmic phase
while they are merged into one large vacuole in the other conditions used in this study (Fig. 4(b)).
This is a well-known behavior [17,46] that we addressed by adding up the separate vacuoles per
cell for our analysis. However, small errors in segmentation can accumulate when comparing
multiple vacuoles to one. Therefore, it is preferable to make comparisons between conditions that
have only one vacuole, such as the stationary phase and rapamycin-treated conditions. In these
conditions, the vacuole volume exhibited a significant, dose-dependent increase when treated
with rapamycin, consistent with previous observations [42].

While the volume statistics (Fig. 5(a)) exhibited a similar trend to the dry mass (Fig. 5(b)),
the median dry-mass concentrations showed stark differences (Fig. 5(c)). In the cytoplasm, the
dry-mass concentration was largest in the stationary phase and decreased significantly when
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treated with increasing rapamycin concentration. This is in line with previous observations of
increased crowding in starved cells [47] and decreased crowding upon rapamycin treatment [9].
In the vacuole, the dry-mass concentration remained comparable across conditions, except for
a decrease in the 1 µM rapamycin treatment. All the above results follow previously observed
patterns and therefore indicate that our method is robust to and able to quantify changes in both
the cytoplasm and vacuole in different conditions.

4. Discussion & conclusion

Our study presents a quantitative evaluation of intracellular components, achieved by combining
RI tomography with a machine-learning-based algorithm. Unlike the task of segmenting an entire
cell, the accurate segmentation of subcellular compartments poses a significant challenge within
RI images, largely due to the lack of chemical specificity. This limitation was counterbalanced
by correlative fluorescence imaging, enabling precise annotations of yeast vacuole. Even a
minimal set of annotations was enough to kick-start the supervised volumetric segmentation of
intracellular organization, facilitating high-throughput statistical analysis of budding yeasts.

Our approach bears similarities to previous studies employing machine learning for segmenting
immunological synapses [48,49] or predicting fluorescence images from RI [20]. However, our
study stands apart in its data preparation stage, where we utilized ilastik to significantly streamline
the labor-intensive annotation procedure. This streamlining of dataset preparation is essential for
generalizing machine-learning-based analysis tasks and enhancing accessibility.

Our hybrid segmentation strategy succeeded fundamentally because there is a significant RI
difference between the cytoplasm and the vacuole (Fig. 6(a)). One may then question whether
a simple segmentation using a RI-thresholding algorithm should also work. As in Fig. 5(c),
however, this is not simple because the intracellular RI difference depends significantly upon the
treatment and culturing conditions. We quantitatively validated this by comparing the volume
obtained from a conventional RI-thresholding algorithm and our machine-learning algorithms
(Figs. 6(b) and (c)). For paired Student t tests, we used the dataset where the vacuole masks
obtained from both the RF classifier and the deep NN were successfully segmented. The results
indicated that the simple thresholding algorithm segmented larger vacuole volumes than the other
algorithms (Fig. 6(b)). The similarity with the labels obtained from the RF classifier was also
compared by computing the Pearson correlation coefficients, which indicated significantly lower
correlation when an RI-thresholding algorithm was used (Fig. 6(c)). Taken together, both RI and
complex morphological features should be considered for accurate segmentation of objects in
cell.

The segmentation performance can be further improved simply by updating the algorithms used
in both ilastik and our NN. It is important to note that the architecture used in our study is a basic
model. We anticipate that future studies will enhance model performance by adopting recently
developed algorithms such as diffusion models [50] or attention models [51,52]. Moreover, we
anticipate an enhancement in our 3D FL data through a transition from our current widefield
FL module to a confocal imaging modality. This shift is expected to refine the accuracy,
resolution, and precision of segmentation, thereby enabling a better distinction between the
vacuolar membrane and individual compartments within the vacuoles in future studies. However,
it is essential to acknowledge the need for careful evaluation of potential photobleaching effects
associated with this modification.

The biological results presented here corroborate interesting correlations between cellular
metabolic activities and the density of intracellular compartments. Unlike previous studies that
focused on size and density of the entire cell, our method allows for simultaneous and detailed
quantification of cytoplasmic and vacuolar densities, offering new possibilities for applications in
yeast cell biology. For example, cellular classifications of yeast can be achieved by combining our
framework with machine-learning classifiers [53–57]. This will facilitate research on regulatory
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Fig. 6. Comparison with conventional thresholding algorithm. (a) Statistical analysis
of the relative refractive index to the background medium for defined cytoplasm (gray) and
vacuole (green). (b) Vacuole volumes obtained from thresholding (gray; threshold) by the
average value of the cytoplasm and the vacuole (∆RIthresh = 4.31 × 10−2) and the RF (cyan)
and the NN (magenta). (c) Pearson correlation coefficients of either the thresholding volume
(gray) and the output from the deep NN (magenta) with the label from the RF classifier.
n= 192. Two-tailed paired Student t tests were performed. and the data are presented as
mean± standard deviation (SD). *****: P< 1−10. n.s.: nonsignificant p value.

mechanisms underlying cytoplasmic density as well as its effects on other processes, such as
phase separation and pathologies. Additionally, combining our method with a microfluidic chip
would allow for quantitative time-lapse measurements of the cell’s response to fast changes, such
as glucose starvation, osmotic shock or temperature changes, which have all been implicated in
affecting cytoplasmic density [14,47,58]. Moreover, it would allow us to follow cells over longer
time-scales and track the effect of aging on cytoplasmic density [5]. Our method is available
online (see Data availability) and we hope that it will prove a useful tool for the analysis of RI
tomograms of various living cells.
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